Saffman, M., Walker, TG & Mølmer, K. Quantum information with Rydberg atoms. Pastor Mod. physics. 822313–2363 (2010).
Jaksch, D. et al. Fast quantum gates for neutral atoms. physics. Pastor Wright. 852208–2211 (2000).
Gaëtan, A. et al. Observe the collective excitation of two individual atoms in the Rydberg blockade mechanism. Nat. physics. 5115–118 (2009).
City, E. et al. Observe the Rydberg blockage between two atoms. Nat. physics. 5110–114 (2009).
Greenberger, DM, Horne, MA & Zeilinger, A. in Bell’s Theorem, Quantum Theory and Cosmology (ed. Kafatos, M.) 69–72 (Springer, 1989).
Aspuru-Guzik, A., Dutoi, AD, Love, PJ & Head-Gordon, M. Quantum computing to simulate molecular energy. science 3091704–1707 (2005).
Farhi, E., Goldstone, J. & Gutmann, S. A quantum approximate optimization algorithm. Preprint at https://arxiv.org/abs/1411.4028 (2014).
Martinez, EA et al. Real-time dynamics of lattice gauge theory with several-qubit quantum computers. nature 534516–519 (2016).
Figgatt, C. et al. Complete 3-qubit Grover search on a programmable quantum computer. Nat. comminicate. 81918 (2017).
DiCarlo, L. et al. Demonstration of a two-qubit algorithm using a superconducting quantum processor. nature 460240–244 (2009).
Harrigan, MP et al. Quantum Approximate Optimization for Nonplanar Graph Problems on Planar Superconducting Processors. Nat. physics. 17332–336 (2021).
Watson, TF et al. A programmable two-qubit quantum processor in silicon. nature 555633–637 (2018).
Zhou, X.-Q., Kalasuwan, P., Ralph, TC & O’Brien, JL Calculation of Unknown Eigenvalues Using Quantum Algorithms. Nat.Photonics 7223–228 (2013).
Scholl, P. et al. Quantum simulation of a two-dimensional antiferromagnet with hundreds of Rydberg atoms. nature 595233–238 (2021).
Ebadi, S. et al. 256 Quantum Phases of Matter on a Programmable Quantum Simulator of Atoms. nature 595227–232 (2021).
Hauke, P., Cucchietti, FM, Tagliacozzo, L., Deutsch, I. & Lewenstein, M. Can quantum simulators be trusted? Congressman ed. physics. 75082401 (2012).
Xia, T. et al. Stochastic benchmarking of single-qubit gates in two-dimensional arrays of neutral atomic qubits. physics. Pastor Wright. 114100503 (2015).
Wang, Y., Kumar, A., Wu, T.-Y. & Weiss, DS Single-qubit gates based on target phase shifts in 3D neutral atom arrays. science 3521562–1565 (2016).
Graham, T. et al. Rydberg-mediated entanglement in two-dimensional arrays of neutral atomic qubits. physics. Pastor Wright. 123230501 (2019).
Barredo, D., de Leséléuc, S., Lienhard, V., Lahaye, T. & Browaeys, A. Atom-by-atom assemblers for defect-free arbitrary two-dimensional atomic arrays. science 3541021–1023 (2016).
Endres, M. et al. Atom-by-atom assembly of defect-free one-dimensional cold atom arrays. science 3541024–1027 (2016).
Kim, H. et al. In situ single-atom array synthesis using dynamic holographic optical tweezers. Nat. comminicate. 713317 (2016).
Gisin, N. & Bechmann-Pasquinucci, H. Bell Inequalities, Bell States, and Maximum Entangled States n qubits. physics. Wright.A sort of 2461-6 (1998).
Song, C. et al. Generate multi-component atomic Schrödinger cat states of up to 20 qubits. science 365574–577 (2019).
Pogorelov, I. et al. A compact ion trap quantum computing demonstrator. PRX Quantum 2020343 (2021).
Omran, A. et al. Generation and manipulation of Schrodinger cat states in Rydberg atomic arrays. science 365570–574 (2019).
Wineland, DJ, Bollinger, JJ, Itano, WM, Moore, FL & Heinzen, DJ Spin squeeze and reduce quantum noise in the spectrum. physics. Pastor A 46R6797-R6800 (1992).
Giovannetti, V., Lloyd, S. & Maccone, L. Quantum Enhanced Measurements: Beyond the Standard Quantum Limit. science 3061330–1336 (2004).
Saffman, M. & Walker, TG. Analysis of Quantum Logic Devices Based on Dipole-Dipole Interactions of Optically Trapped Rydberg Atoms. physics. Pastor A 72022347 (2005).
Carr, AW & Saffman, M. Double magic light trapping for hyperfine clock transitions of Cs atoms. physics. Pastor Wright. 117150801 (2016).
Munds, T. et al. 14 Qubit entanglement: creation and coherence. physics. Pastor Wright. 106130506 (2011).
Abrams, DS & Lloyd, S. Quantum algorithms provide exponential speed increase for finding eigenvalues and eigenvectors. physics. Pastor Wright. 835162–5165 (1999).
Bravyi, SB & Kitaev, AY Fermion quantum computing. install. physics. 298210–226 (2002).
Bravyi, S., Gambetta, JM, Mezzacapo, A. & Temme, K. Gradual reduction of qubits to simulate the Fermionic Hamiltonian. Preprint at https://arxiv.org/abs/1701.08213 (2017).
Kołos, W., Szalewicz,, K. & Monkhorst, HJ New Born-Oppenheimer Potential Energy Curve and Vibrational Energy of the Electronic Ground State of Hydrogen Molecules. J. Chemistry. physics. 843278–3283 (1986).
Preskill, J. Quantum Computing in the NISQ Era and Beyond. quantum 279 (2018).
Peruzzo, A. et al. A variational eigenvalue solver on a photonic quantum processor. Nat. comminicate. 54213 (2014).
Shor, PW Quantum Computing Algorithms: Discrete Logarithms and Factorization.exist process.35th Annual Symposium on Fundamentals of Computer Science 124-134 (IEEE, 1994).
Harrow, AW, Hassidim,, A. & Lloyd, S. Quantum Algorithms for Systems of Linear Equations. physics. Pastor Wright. 103150502 (2009).
O’Brien, TE, Tarasinski, B. & Terhal, BM Quantum phase estimation of multiple eigenvalues for small-scale (noisy) experiments. New J. Physics. twenty one023022 (2019).
Endo, S., Cai, Z., Benjamin, SC & Yuan, X. Hybrid quantum-classical algorithms and quantum error mitigation. J. Physics. Socialist Party. Japan. 90032001 (2021).
Bluvstein, D. et al. Quantum processors based on coherent transmission of arrays of entangled atoms. nature https://doi.org/10.1038/s41586-022-04592-6 (2022).
Xiao, Y.-F., Lin, Y.-J. & Chen, Y.-C. Λ-enhanced gray molasses cooling of cesium atoms on the D2 line. physics. Pastor A 98033419 (2018).
Gillen-Christandl, K., Gillen, G., Piotrowicz, MJ, and Saffman, M. Comparison of Gaussian and Gaussian laser beams for processing atomic qubits. application. physics.Second 122131 (2016).
Gullion, T., Baker, DB & Conradi, MS New, Compensated Carr-Purcell sequences. J. McGonagall. resonance. 89479–484 (1990).
Cool, S. et al. Analysis of Phase Shift Mechanisms in Standing Wave Dipole Traps. physics. Pastor A 72023406 (2005).
Levine, H. et al. Parallel implementation of high-fidelity multi-qubit gates with neutral atoms. physics. Pastor Wright. 123170503 (2019).
Robicheaux, F., Graham, T. & Saffman, M. Photon recoil and laser focusing limit Rydberg gate fidelity. physics. Pastor A 103022424 (2021).
Saffman, M., Beterov, II, Dalal, A., Paez, EJ & Sanders, BC Symmetric Rydberg-controlled Z-gates with adiabatic pulses. physics. Pastor A 101062309 (2020).
Zhang, S., Robicheaux, F….